Coding workshop: Week 7

using Git and GitHub

git
github
tidyverse
here
ggeffects
flextable
here
str
glimpse
class
lm
ggpredict
ggsave
cor.test
plot
geom_ribbon
geom_line
read_csv
ggplot
geom_point
github
forking
Author
Affiliation
Modified

May 24, 2025

1. Summary

Packages

  • tidyverse
  • here
  • ggeffects
  • flextable

Operations

New functions

  • organize file paths using here()
  • look at data using str(), glimpse(), and class()
  • construct a linear model using lm()
  • visualize model predictions using ggpredict()
  • saving image using ggsave()
  • calculating correlation using cor.test()
  • plot model diagnostics using plot()
  • plot model 95% CI using geom_ribbon()
  • plot model predictions using geom_line()

Review

  • read in data using read_csv()
  • visualize data using ggplot()
  • create scatterplot using geom_point()

Data sources

The data from this workshop comes from two sources:

  1. Hamilton et al. 2022. “Integrated multi-trophic aquaculture mitigates the effects of ocean acidification: Seaweeds raise system pH and improve growth of juvenile abalone.” https://doi.org/10.1016/j.aquaculture.2022.738571

  2. Ramirez, A. 2024. Sonadora elevational plots: long-term monitoring of air temperature ver 877108. Environmental Data Initiative. https://doi.org/10.6073/pasta/6b66eecae3092d8f2340b5132dec38ab (Accessed 2025-05-14).

2. Code

All code is in this repository.

All GitHub/Git steps are in this guide. Videos to accompany this guide are on Canvas.